Beryllium Toxicity In Relation To Chemical Forms and Particle Sizes

¹ <u>Muller C</u>, ²Salehi F, ²Mazer B, ³Truchon G, ⁴Chevalier G, ¹Philippe S, ³Cloutier Y, and ¹Zayed J.

1University of Montreal, Department of occupational and environmental health 2 McGill, University, Meakins Christie Laboratories 3Institut de recherche en santé et sécurité au travail (IRSST) 4University of Quebec in Montreal

Threshold limit value (TLV) for Be

- Quebec TWA-TLV : 2007 \rightarrow 0,15 μ g/m³
- Before 2007 \rightarrow 2,0 $\mu g/m^3$

NIC \rightarrow 0,05 µg/m³ (ACGIH, 2008)

Immunological reactions observed in affected individuals (BeS;CBD)

- Be-specific hypersensitivity responses involving CD4+ T-lymphocytes.
- Production of T helper 1 (Th1) type cytokines.
- Inflammation in the lung.

Risk factors

- Air Be concentration
- Particle size
- Chemical form
- Duration of exposure
- Genetic susceptibility of individuals

Objective

Assessment of the toxicity of Be following inhalation — nose only - exposure according to particle size and chemical species

Be species and particle sizes

Three chemical forms

- Be
- BeO
- AlBe

Two particle sizes

- Fine (F)
- Total (T)

Acclimatization

Intox Chamber

Methods

Exposure duration: 6h/d, 5 d/w, 3 w

- 245 mice, 7 Groups (n=35)
 - 1: control group
 - 2: Be-T
 - 3: Be-F
 - 4: BeO-T
 - 5: BeO-F
 - 6: BeAl-T
 - 7: BeAl-F

Methods

Level of exposure \rightarrow 250 μ g/m³

 One week after exposure, mice were sacrificed (28 d)

 5 mice/group were sacrificed 3 weeks after the end of exposure (42 d)

Monitoring

Evaluation of a methodology for Controlling Beryllium Exposure in laboratory setting

Results show that the protective measures applied during this research have been effective.

Tissue sampling

- Urine (1/week)
- Lung
- Spleen
- Liver
- Kidney
- Blood

Analysis

- Tissue concentration (ICP-MS)
- Lung histology
- Cytokine measurement (ELISA)
- Flow Cytometry
- BeLPT

RESULIS

Be particle size in the inhalation chamber

Chemical form	MMAD (µm ± GSD)
Be-T	4.1 ± 0.71
Be-F	1.5 ± 0.12
BeO-T	0.41 ± 0.14
BeO-F	0.41 ± 0.03
BeAl-T	6.5 ± 1.96
BeAl-F	4.4 ± 1.64

Tissue concentrations Be-T vs BeAl-T

Tissue concentrations Be-F vs BeO-F vs BeAl-F

Tissue concentrations Be-F vs Be-T

Tissue concentrations BeAl-F vs BeAl-T

Flow Cytometry F vs T

Flow Cytometry Be-F vs BeO-F vs BeAl-F

Cytokine concentrations F vs T

Cytokine concentrations Be-F vs BeO-F vs BeAl-F

Histology of lung Mice exposed to Be

Histology of lung Mice exposed to BeO

Control group

BeO-F (3 weeks after exposure)

Histology of lung in mice exposed to BeAl

Histological score of lung inflammation 1 week after the end of exposure

1:no inflammation 2:mild inflammation 3:moderate inflammation 4:severe inflammation	1	2	3
CTL	95,50%	4,50%	0
Be-F	0	54,50%	45,50%
Be-T	22,70%	68,20%	9,10%
BeO-F	22,70%	63,60%	13,60%
BeAl-F	44,40%	55,60%	0
BeAI-T	61,10%	38,90%	0

Histological score of lung inflammation 3 weeks after the end of exposure

1:no inflammation 2:mild inflammation 3:moderate inflammation 4:severe inflammation	1	2	3
CTL	91,70%	8,30%	0
Be-F	0	29,40%	70,6%
BeO-F	0	75%	25%
BeAl-F	0	77,80%	22,20%
BeAI-T	0	100%	0

- What is the impact of particle size on Be toxicity?
- Be tissue concentrations were significantly higher in mice exposed to Be-F and BeAl-F.
- Significant difference of lung inflammation between fine and total particles for Be and BeAl.
- Cytokine production was significantly higher in mice exposed to Be-F and BeAl-F.

• What is the impact of chemical form on Be toxicity?

For total particles:

- Be in lung, spleen and liver were higher in mice exposed to Be compared to BeAl.
- Be concentrations were higher in blood in mice exposed to BeAl compared to Be.

What is the impact of chemical form on Be toxicity?

For fine particles:

- Be concentrations in lung were higher in mice exposed to BeO compared to Be and BeAl.
- Be concentrations in blood were higher in mice exposed to BeAl compared to Be and BeO.

What is the impact of chemical form on Be toxicity?

■ Lung inflammation was significantly higher in mice exposed to Be than BeO.

- This study is a unique murine model to investigate the importance of particle size in producing chronic lung disease.
- Our results are a first attempt at duplicating the immunologic findings that characterize workers exposed to Be compounds at the workplace.
- This model will provide information allowing identification of a scientifically based threshold to protect workers against CBD.

Acknowledgements

University of Montreal

Dr. Joseph Zayed, director Lise Gareau, Elmirah Alyeva, Julienne Lama, Suzanne Philippe

McGill University

Dr. Bruce Mazer Fariba Salehi Severine Audessou

University of Quebec in Montreal

Dr. Gaston Chevalier

IRSST

Ginette Truchon Yves Cloutier

This research was supported by the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), QUEBEC, CANADA.

